## Physics 12 January 2001 Provincial Examination

## Answer Key / Scoring Guide

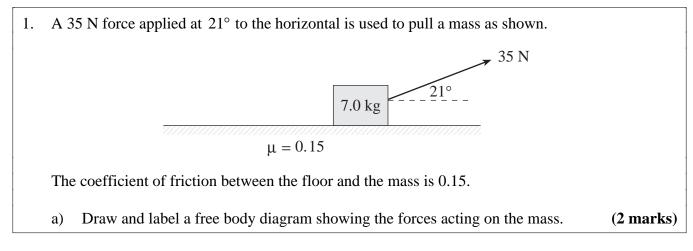
|   | Organizers                                       | Sub-Organizers |  |  |  |  |
|---|--------------------------------------------------|----------------|--|--|--|--|
| 1 | . Vector Kinematics in Two Dimensions <i>and</i> | A, B           |  |  |  |  |
|   | Dynamics and Vector Dynamics                     | C, D           |  |  |  |  |
| 2 | . Work, Energy and Power <i>and</i>              | E              |  |  |  |  |
|   | Momentum                                         | F, G           |  |  |  |  |
| 3 | . Equilibrium                                    | Н              |  |  |  |  |
| 4 | . Circular Motion<br>and                         | Ι              |  |  |  |  |
|   | Gravitation                                      | J              |  |  |  |  |
| 5 | . Electrostatics                                 | K, L           |  |  |  |  |
| 6 | . Electric Circuits                              | M, N           |  |  |  |  |
| 7 | . Electromagnetism                               | O, P           |  |  |  |  |
|   |                                                  |                |  |  |  |  |

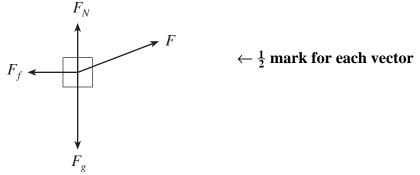
#### **CURRICULUM:**

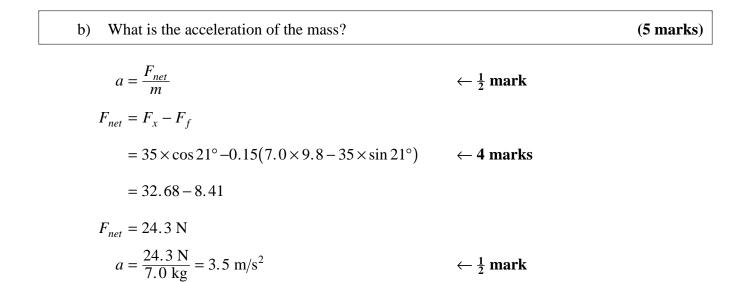
### PART A: Multiple Choice (each question worth TWO marks)

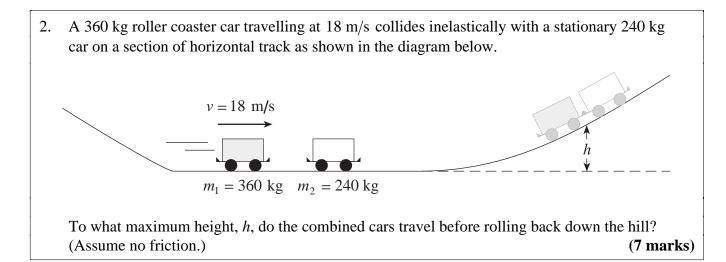
| Q   | K   | С     | S | CO | PLO        | Q   | K | С | S | CO | PLO       |
|-----|-----|-------|---|----|------------|-----|---|---|---|----|-----------|
| 1.  | С   | Κ     | 2 | 1  | A7         | 16. | D | U | 2 | 4  | I4        |
| 2.  | С   | U     | 2 | 1  | B2         | 17. | В | U | 2 | 4  | I4; D5    |
| 3.  | А   | U     | 2 | 1  | B4, 5      | 18. | D | Κ | 2 | 4  | J5, 6     |
| 4.  | D   | Κ     | 2 | 1  | D4         | 19. | С | Н | 2 | 4  | I4; D5    |
| 5.  | В   | U     | 2 | 1  | C4, 7      | 20. | В | Κ | 2 | 5  | L1        |
| 6.  | D   | U     | 2 | 1  | D6; C4     | 21. | А | U | 2 | 5  | К3        |
| 7.  | С   | U     | 2 | 2  | E10        | 22. | А | U | 2 | 5  | K8        |
| 8.  | С   | Κ     | 2 | 2  | F2; E4; A1 | 23. | D | U | 2 | 6  | M6        |
| 9.  | С   | U     | 2 | 2  | F6, 7; E7  | 24. | D | U | 2 | 6  | M5; N2    |
| 10. | С   | U     | 2 | 2  | G3         | 25. | В | Κ | 2 | 7  | O2        |
| 11. | С   | Η     | 2 | 2  | F1; A10    | 26. | D | U | 2 | 7  | O4        |
| 12. | В   | Κ     | 2 | 3  | H7         | 27. | В | U | 2 | 7  | O5        |
| 13. | В   | U     | 2 | 3  | H5         | 28. | А | U | 2 | 7  | P4, 6; O3 |
| 14. | DEI | LETED | ) |    |            | 29. | В | U | 2 | 7  | P9        |
| 15. | А   | Κ     | 2 | 4  | 13         | 30. | А | U | 2 | 7  | P2, 3, 5  |

### **Multiple Choice = 60 marks**


## PART B: Written Response


| Q  | В | С | S | СО | PLO          |
|----|---|---|---|----|--------------|
| 1. | 1 | U | 7 | 1  | C4, 8; D4    |
| 2. | 2 | U | 7 | 2  | E7, 8; F7    |
| 3. | 3 | U | 7 | 3  | H3; C8       |
| 4. | 4 | U | 7 | 4  | J3; D5       |
| 5. | 5 | U | 7 | 5  | K5           |
| 6. | 6 | U | 7 | 6  | N2; M6, 5    |
| 7. | 7 | Н | 9 | 7  | O4, 6; I1, 4 |
| 8  | 8 | Н | 5 | 1  | A10; F4      |
| 9. | 9 | Н | 4 | 4  | J8           |


## Written Response = 60 marks

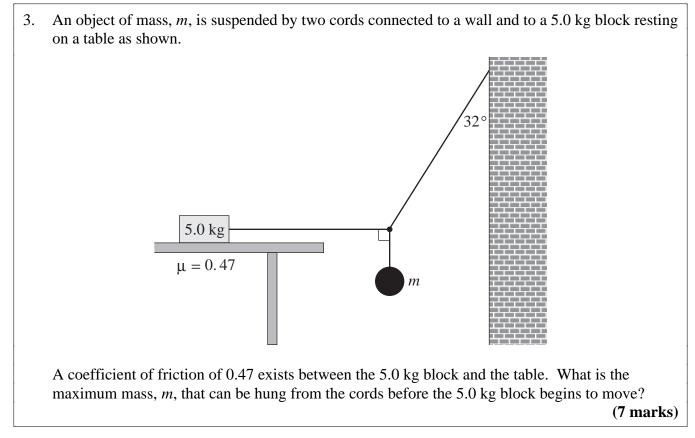

| Multiple Choice          | = | 60 (30 questions) |
|--------------------------|---|-------------------|
| Written Response         | = | 60 (9 questions)  |
| <b>EXAMINATION TOTAL</b> | = | 120 marks         |

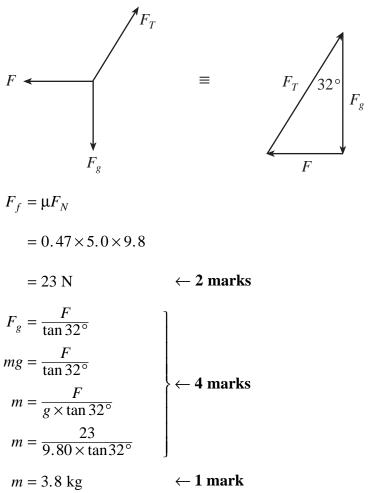
| LEGEND:                                                                      |                                                                            |                                                              |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|
| $\mathbf{Q}$ = Question Number                                               | $\mathbf{B} = \mathbf{Score Box Number}$                                   | $\mathbf{C} = \operatorname{Cognitive} \operatorname{Level}$ |
| <b>CO</b> = Curriculum Organizer<br><b>PLO</b> = Prescribed Learning Outcome | $\mathbf{K} = \mathbf{K}\mathbf{e}\mathbf{y}\mathbf{e}\mathbf{d}$ Response | $\mathbf{S} = \mathbf{Score}$                                |









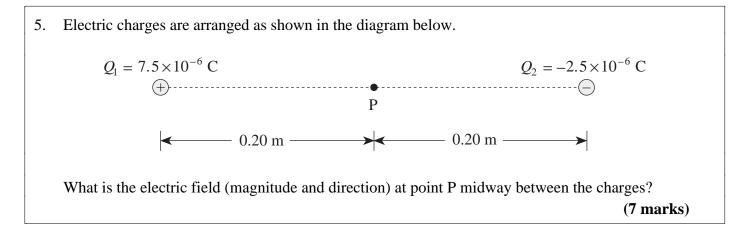


$$V_{combined} = \frac{m_1 v_1}{m_1 + m_2}$$
  
=  $\frac{360 \cdot 18}{360 + 240}$   
= 10.8 m/s  $\leftarrow$  3 marks  
 $E_{k_{combined}} = \frac{1}{2} m v^2$ 

By conservation of energy:

$$mgh = \frac{1}{2}mv^{2} \quad \leftarrow 2 \text{ marks}$$
$$\therefore h = \frac{v^{2}}{2g}$$
$$= \frac{(10.8)^{2}}{2 \cdot 9.8}$$
$$= 5.95 \text{ m}$$

 $= 6.0 \text{ m} \leftarrow 2 \text{ marks}$ 






4. a) Mars has a mass of  $6.37 \times 10^{23}$  kg and a radius of  $3.43 \times 10^6$  m. What is the gravitational field strength on its surface? (4 marks)

$$g = \frac{GM}{r^2} \quad \leftarrow 2 \text{ marks}$$
$$= \frac{6.67 \times 10^{-11} (6.37 \times 10^{23})}{(3.43 \times 10^6)^2} \quad \leftarrow 1 \text{ mark}$$
$$= 3.61 \text{ N/kg} \quad \leftarrow 1 \text{ mark}$$

| b) | What thrust force must the rocket engine of a Martian lander exert if the 87.5 kg  | spacecraft |
|----|------------------------------------------------------------------------------------|------------|
|    | is to accelerate upwards at $1.20 \text{ m/s}^2$ as it leaves the surface of Mars? | (3 marks)  |

| $F_{net} = ma$                  | $\leftarrow 1 \text{ mark}$   |
|---------------------------------|-------------------------------|
| $F_T - F_g = ma$                |                               |
| $F_T - mg = ma$                 | $\leftarrow \frac{1}{2}$ mark |
| $F_T - 87.5(3.61) = 87.5(1.20)$ | $\leftarrow 1 \text{ mark}$   |
| $F_T = 421 \text{ N}$           | $\leftarrow \frac{1}{2}$ mark |

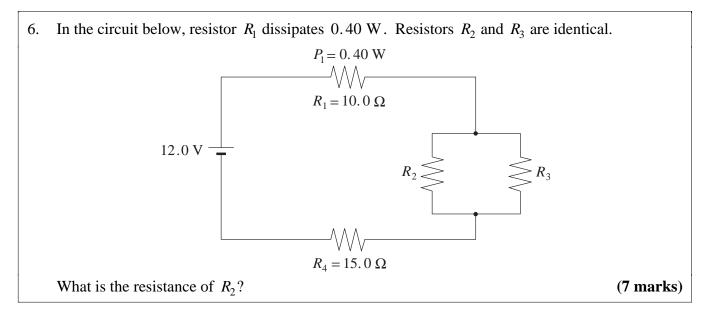


$$E_{1} = \frac{kQ_{1}}{r_{1}^{2}}$$

$$= \frac{9.0 \times 10^{9} \cdot 7.5 \times 10^{-6}}{(0.20)^{2}}$$

$$= 1.69 \times 10^{6} \text{ N/C (right)} \qquad \leftarrow 1\frac{1}{2} \text{ marks}$$

$$E_{2} = \frac{kQ_{2}}{r_{2}^{2}}$$


$$= \frac{9.0 \times 10^{9} \cdot 2.5 \times 10^{-6}}{(0.20)^{2}}$$

$$= 5.63 \times 10^{5} \text{ N/C (right)} \qquad \leftarrow 1\frac{1}{2} \text{ marks}$$

$$E_{T} = E_{1} + E_{2} \qquad \leftarrow 2 \text{ marks}$$

$$= 1.69 \times 10^{6} \text{ N/C + 5.63 \times 10^{5} N/C}$$

$$= 2.25 \times 10^{6} \text{ N/C (right)} \qquad \leftarrow 2 \text{ marks}$$





# $P = I^2 R$ $P_1 = I^2 R_1$ $I = \left(\frac{P_1}{R_1}\right)^{\frac{1}{2}}$ ← 2 marks $=\left(\frac{0.40}{10}\right)^{\frac{1}{2}}$ = 0.20 A $V_1 = IR$ = 0.2(10) $\leftarrow 1 \text{ mark}$ = 2 V $V_4 = IR$ = 1K= 0.2(15) $\leftarrow 1 \text{ mark}$ = 3 V $\begin{cases} V_3 = V_4 = 12 - V_1 - V_4 \\ = 7 \text{ V} \end{cases}$ $\end{cases} \leftarrow 1 \text{ mark}$ $I_2 = I_3$ $\leftarrow 1 \text{ mark}$ $V_3 = I_3 R_3$ $7 = 0.1 R_2$ $\leftarrow 1 \text{ mark}$ $R_2 = 70 \Omega$

## Alternate Key:

$$P = I^{2} \cdot R$$

$$P_{1} = I^{2} \cdot R_{1}$$

$$\therefore I = \left(\frac{P_{1}}{R_{1}}\right)^{\frac{1}{2}}$$

$$= \left(\frac{0.40}{10.0}\right)^{\frac{1}{2}}$$

$$= 0.20 \text{ A} \qquad \leftarrow 2 \text{ marks}$$

$$\therefore R_{circuit} = \frac{V}{I}$$

$$= \frac{12.0}{0.20}$$

$$= 60.0 \Omega \qquad \leftarrow 2 \text{ marks}$$

$$\therefore R_{\parallel} = 60.0 \Omega - (10.0 \Omega + 15.0 \Omega)$$

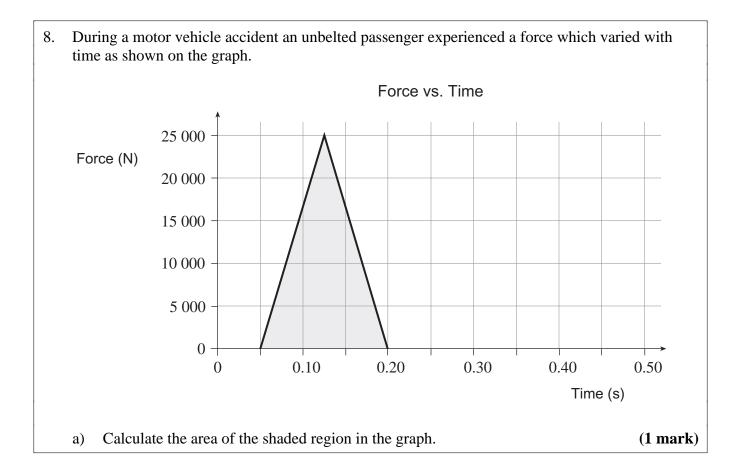
$$= 35.0 \Omega \qquad \leftarrow 2 \text{ marks}$$

$$\therefore R_{2} = R_{3} = 2 \cdot 35.0 \Omega$$

$$= 70.0 \Omega \qquad \leftarrow 1 \text{ mark}$$

| 7. | a) | A proton moves with a speed of $3.6 \times 10^5$ m/s at right angles to a uniform 5. | $.0 \times 10^{-5} \text{ T}$ |
|----|----|--------------------------------------------------------------------------------------|-------------------------------|
|    |    | magnetic field. What is the radius of curvature for the motion of the proton?        | (5 marks)                     |

| $F_c = \frac{mv^2}{R}$                                                                                                                                          | $\leftarrow 1 \text{ mark}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| $F_B = qvB$                                                                                                                                                     | $\leftarrow 1 \text{ mark}$ |
| $F_c = F_B$                                                                                                                                                     | $\leftarrow$ 1 mark         |
| $R = \frac{mv}{Bq} = \frac{\left(1.67 \times 10^{-27}\right) \left(3.6 \times 10^{5}\right)}{\left(5.0 \times 10^{-5}\right) \left(1.6 \times 10^{-19}\right)}$ | $\leftarrow 1 \text{ mark}$ |
| R = 75  m                                                                                                                                                       | $\leftarrow 1 \text{ mark}$ |


b) Describe the path of the proton in the magnetic field and use principles of physics to explain the proton's motion. (4 marks)

The path is circular.  $\leftarrow 1 \text{ mark}$ 

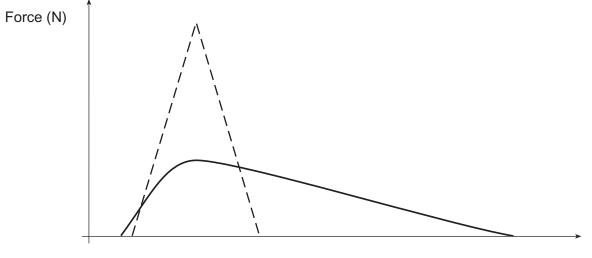
Moving charge in magnetic field produces a magnetic force.  $\leftarrow$  1 mark

Force  $\perp$  velocity.  $\leftarrow 1 \text{ mark}$ 

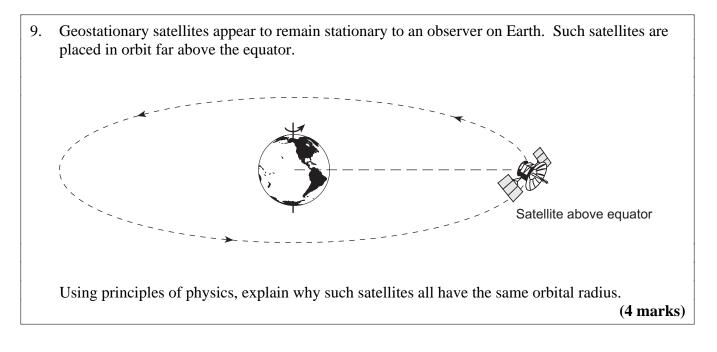
This perpendicular force (acting on proton) produces circular motion.  $\,\leftarrow\, 1\,mark$ 



two triangles:  $(0.075 \times 25\ 000) = 1\ 875\ N \cdot s$ 


 $= 1 900 \text{ N} \cdot \text{s} \quad \leftarrow 1 \text{ mark}$ Force (N) 25 000 + 15 000 + 15 000 + 15 000 + 10 000 + 5 000 + 10 000 + 5 000 + 10 000 + 5 000 + 10 000 + 5 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 0000 + 10 000 + 10 000 + 10 000 + 10 000 + 10 000 + 1

#### Impulse or change in momentum


c) If the passenger was wearing a seatbelt properly, the maximum force would have been one third the force experienced without the seatbelt. Sketch on the graph below how the force on the belted passenger might have varied with time. (2 marks)

peak  $\approx \frac{1}{3} (25\ 000) \approx 8\ 000\ \text{N} \leftarrow 1\ \text{mark}$ (but for a longer period of time)

area should be (about) the same  $\leftarrow 1 \text{ mark}$ 



Time (s)



The period of such satellites must be 24 hours to remain stationary over one point.  $\leftarrow 1$  mark The centripetal force is a gravitational force.  $\leftarrow 2$  marks For a period of 24 hours there is one orbital radius.  $\leftarrow 1$  mark

#### END OF KEY