Physics 12 January 2003 Provincial Examination

Answer Key / Scoring Guide

	Organizers	Sub-Organizers
1.	Vector Kinematics in Two Dimensions and	Α, Β
	Dynamics and Vector Dynamics	C, D
2.	Work, Energy and Power and	Ε
	Momentum	F, G
3.	Equilibrium	Н
4.	Circular Motion and	Ι
	Gravitation	J
5.	Electrostatics	K, L
6.	Electric Circuits	M, N
7.	Electromagnetism	O, P

CURRICULUM:

PART A: Multiple Choice (each question worth TWO marks)

Q	K	С	S	CO	PLO	Q	K	С	S	CO	PLO
1.	А	K	2	1	C1	16.	D	U	2	4	J9
2.	В	U	2	1	C4, 7	17.	А	U	2	4	J7
3.	D	U	2	1	D1, 3	18.	D	Κ	2	5	K6
4.	А	U	2	1	C8, C4	19.	А	U	2	5	K5
5.	С	U	2	1	D6; B2	20.	С	Н	2	5	L6
6.	С	Κ	2	2	E1	21.	А	Κ	2	6	M4, 7
7.	В	U	2	2	E7; A10	22.	В	U	2	6	N2; M7
8.	В	U	2	2	E2, 7	23.	В	Н	2	6	M5
9.	А	Н	2	2	E7, 8, 2	24.	С	Κ	2	7	P2
10.	D	Κ	2	3	H4	25.	А	U	2	7	O4, 5
11.	В	U	2	3	H1	26.	С	U	2	7	08
12.	D	Κ	2	4	I5, 1; B3	27.	D	U	2	7	06
13.	D	U	2	4	I4	28.	С	U	2	7	P5
14.	С	U	2	4	I4	29.	В	U	2	7	P9
15.	А	Κ	2	4	J8	30.	А	U	2	7	P11

Multiple Choice = 60 marks

PART B: Written Response

Q	В	С	S	CO	PLO
1.	1	U	7	1	B2, 8
2.	2	Н	9	2	F4, 7, 5
3.	3	U	7	3	H8, 10, 11
4.	4	U	7	4	J3, 7
5.	5	U	7	5	L4
6.	6	U	7	6	M11, 10
7.	7	U	7	7	O5; P1
8	8	Н	5	1	A10; B2
9.	9	Н	4	3	H2, 3

Written Response = 60 marks

EXAMINATION TOTAL	=	120 marks
Written Response	=	60 (9 questions)
Multiple Choice	=	60 (30 questions)

LEGEND:		
\mathbf{Q} = Question Number	\mathbf{B} = Score Box Number	C = Cognitive Level
CO = Curriculum Organizer	$\mathbf{K} = \text{Keyed Response}$	S = Score
PLO = Prescribed Learning Outcome		

 $d_y = -40.9 \text{ m} \leftarrow 1 \text{ mark}$

$$\therefore h = 41 \text{ m}$$

2. a) A 0.120 kg ball travelling at 11.0 m/s impacts a solid massive steel wall. The ball bounces straight back at 8.9 m/s.

If the ball was in contact with the steel wall for 0.17 s, what is the magnitude of the force that the steel wall imparted on the ball? (5 marks)

Impulse = *change in momentum*

←1 mark

$$F \times t = m_2 v_2 - m_1 v_1 \quad \leftarrow 2 \text{ marks}$$

$$F = \frac{m_2 v_2 - m_1 v_1}{t}$$

$$F = \frac{0.120 \times (-8.9) - 0.120 \times (11.0)}{0.17} \quad \leftarrow 1 \text{ mark}$$

$$F = \frac{-2.388}{0.17}$$

$$F = 14 \text{ N} \quad \leftarrow 1 \text{ mark}$$

b) An identical ball with the same initial speed as in part a) is then thrown towards a glass window. The glass window cracks and the ball stops in 0.17 s.

The force experienced is equal to the rate of change in momentum. $(\Delta p/\Delta t)$ (1 mark) Since both collisions occur in the same time the greater force is experienced by the ball experiencing the greater change in momentum. (2 marks)

The ball in part a) experienced a larger change in momentum as it changed direction. (1 mark)

3. The 8.0 m uniform beam shown below, suspended horizontally by two ropes, has a mass of 75 kg.

$$\Sigma \tau = 0 = -F_{T_1} \cos 30^{\circ} (6.0) + 75(9.8)(2.0)$$

 $F_{T_1} = 2.8 \times 10^2 \text{ N}$ $\leftarrow 4 \text{ marks}$

$$\Sigma F_y = 0 = -75(9.8) + 283\cos 30^\circ + F_{T_2}\sin 74^\circ$$

 $F_{T_2} = 5.1 \times 10^2 \text{ N}$ $\leftarrow 3 \text{ marks}$

4. A 12 000 kg spaceship is 7.2×10^8 m from the centre of a planet that has a mass of 5.1×10^{25} kg.

The spaceship gains 9.0×10^{11} J of kinetic energy as it falls to the planet's surface. What is the radius of this planet? (7 marks)

 $E_{p_1} = E_{p_2} + E_k \qquad \leftarrow 1 \text{ mark}$ $E_{p_2} = E_{p_1} - E_k$ $-\frac{GMm}{R_2} = -\frac{GMm}{R_1} - E_k \qquad \leftarrow 1 \text{ mark}$ $\frac{-6.67 \times 10^{-11} \times 5.1 \times 10^{25} \times 12\ 000}{R_2} = \frac{-6.67 \times 10^{-11} \times 5.1 \times 10^{25} \times 12\ 000}{7.2 \times 10^8} - 9.0 \times 10^{11} \qquad \leftarrow 3 \text{ marks}$ $\frac{-4.082 \times 10^{19}}{R_2} = -5.6695 \times 10^{10} - 9.0 \times 10^{11}$ $\frac{-4.082 \times 10^{19}}{R_2} = -9.567 \times 10^{11} \qquad \leftarrow 1 \text{ mark}$ $\frac{-4.082 \times 10^{19}}{R_2} = R_2$ $4.3 \times 10^7 \text{ m} = R_2 \qquad \leftarrow 1 \text{ mark}$

$$v = \frac{1.67 \times 10^{-27}}{1.67 \times 10^{-27}} \leftarrow 1 \text{ mark}$$
$$v = 1.5 \times 10^6 \text{ m/s} \leftarrow 1 \text{ mark}$$

b) What is the distance *d* from the fixed charge when the proton is stopped? (3 marks)

 $\Delta E_p = \Delta E_p$ $\leftarrow 1 \text{ mark}$

$$q\Delta V = \frac{kqQ}{R} \quad \leftarrow 1 \text{ mark}$$

$$R = \frac{kQ}{\Delta V}$$

$$= \frac{(9.0 \times 10^9)(5.0 \times 10^{-6})}{12\ 000} \quad \leftarrow \frac{1}{2} \text{ mark}$$

$$R = 3.8 \text{ m} \quad \leftarrow \frac{1}{2} \text{ mark}$$

b) What is the effect on the emf of the battery when switch S is opened?

(1 mark)

no effect

b)	What is the direction of the current in the loop?	(2 marks)
----	---	-----------

clockwise

counter-clockwise

8. The following data is collected in a kinematics experiment using a toy car.

<i>t</i> (s)	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
v(m/s)	0.35	0.46	0.59	0.70	0.83	0.94	1.10	1.18

a) Plot the data on a *v* vs. *t* graph and extrapolate your line back to t = 0.

(2 marks)

$$\Delta x \doteq \frac{1}{2} (0.12 + 1.20) (0.90 \text{ s})$$

≐ 0.59 m

c) What does the <i>y</i> -intercept of the graph represent? (1 mark
--

initial speed of the car

9. A mass suspended by two ropes is shown below. It is noticed that for any angle θ used for rope 2, the tension in rope 2 is always greater than the tension in rope 1.

Rope 1 always has a tension equal to only the horizontal component of rope 2, whereas rope 2 (1 mark) also has a vertical component equal to the weight of the mass. (1 mark) These 2 conditions require the T_2 to be larger than T_1 . (2 marks)

END OF KEY